网站主页 |手机客户端
九年级化学_初三化学_无忧化学_欢迎你!
您当前位置:主页 > 知识之窗 > 知识杂谈 > 划时代的材料高分子化合物(2)

划时代的材料高分子化合物(2)

2013-05-31 字号:[ ] 编辑:56hx 来源:未知 浏览:

    化过程一般在摄氏140——150度的温度下进行。当时古德伊尔的小火炉正好起了加热的作用。硫化的主要作用,简单地说,就是在分子链与分子链之间形成交联,从而使分子链间作用力量增强。
    橡胶用作车轮的历史不过一百余年,但人类对于橡胶的需要却日益增长。1845年汤姆森发明了充气橡胶管套在车子上,并以此获得了专利。以前的车子都是木轮的,或在外部加金属轮箍,但人们发现柔软的橡胶比木头和金属更加耐磨,而且减震性好,使人们乘坐车时感到很舒适。1890年轮胎用于自行车,1895年汽车也装上了轮胎。如此广泛的应用使天然橡胶供不应求,整个军需品生产受到很大威胁。
    面对橡胶生产的严峻形势,各国竞相研制合成橡胶。德国首先从异戊二烯中合成了橡胶。当时的德皇威廉二世还用该橡胶制成了轮胎装在皇家汽车上,以此炫耀德国在科技上的成就。这种合成方法有明显缺点:一是由于异戊二烯本身需从天然橡胶中提取,自身很难合成。二是由于聚合时没有规律,制成的橡胶用不了多久就会变粘。看来它也只能用于国事活动的皇家汽车了。只要加入合适的催化剂如稀土元素,就可以制成甚至比天然橡胶还好的“稀土异戊橡胶”。
    一战时期的德国,在天然橡胶供应被切断后,曾制成一种叫甲基橡胶的合成橡胶,但质量低劣,战后便被淘汰了。二战后,各种合成橡胶应运而生。如合成了用钠作催化剂聚合丁二烯制得的丁钠橡胶、用丁二烯和苯乙烯聚合制得的丁苯橡胶、用氯丁二烯聚合制得的氯丁橡胶等等。
    二次大战中,日本攻占了橡胶产量最大的马来西亚(虽然马来半岛并非橡胶的原产地,但从巴西运来的种子在马来生长茂盛,而在它的原产地产量却逐年下降),对美国的橡胶工业构成严重威胁。可是美国早有准备,在战后大力研究合成橡胶。1955年利用齐格勒在聚合乙烯时使用的催化剂(也称齐格勒——纳塔催化剂)聚合异戊二烯。首次用人工方法合成了结构与天然橡胶基本一样的合成天然橡胶。不久用乙烯、丙烯这两种最简单的单体制造的乙丙橡胶也获成功。此外还出现了各种具有特殊性能的橡胶。至此,合成橡胶的舞台上已经变得丰富多彩了。
    合成橡胶的关键是聚合反应。如何将一个个单体聚合成像胶分子呢?其中的奥秘是游离基。什么是游离基呢?例如:乙烷分子(C2H6)是稳定的。但在某些条件下,如受热、光或某些化学剂作用时,乙烷分子一分为二:生成的两个甲基(•CH3)都带有一个不成对的电子(也称孤电子)。带有孤电子的原子团就称为游离基,常用 R表示。游离基性质十分活泼,极易跟别的游离基或者另外的化合物起反应。只要有一个游离基出现,便会跟周围物质立刻发生聚合反应。通过加热不稳定的化合物如过氧化氢(H2O2)、过硫酸钾等可以获得游离基。聚合反应一般可分为三步。第一步是链引发。先由过氧化物产生游离基R,然后R使被合成单体的共价键打开,形成活性单体。第二步是链增长。活性单体通过反复地、迅速地与原单体加合,使游离基的碳链迅速增长。第三步是链终止,即在一定的条件下,当碳链聚合到一定程度时,游离基的孤电子变为成对电子。这时游离基特性消失,链就不能再增长了。
    注意,上述过程虽有 3个步骤,但除了引发游离基较慢之外,后两步都是在一瞬间完成的。可以说游离基一旦形成,成百成千成万个单位的双键立刻打开,相继连接成很多个大分子。因此这也称为连锁反应。
    人工合成的橡胶在许多地方优于天然橡胶,人工仿照自然,从自然中发现规律,最后超越自然,这正是科学技术的发展规律。
纤维素和合成纤维
    淀粉是人们熟悉的东西。你知道它的分子式吗?它是一种高分子化合物。纤维素和淀粉的分子式是一样的,性质可就大不相同了。植物的枝干主要是由纤维素组成的,它们只能用来烧火,人是吃不下去的。这是什么原因呢?我们知道,淀粉和纤维素的分子都是由许多萄葡糖单位联接而成的,但联接方式都不同。葡萄糖分子可以正着看(以u表示),也可以倒着看(以n表示),淀粉分子可以由葡萄糖分子按“……uuuuuu…”的图式缩合而成,而纤维分子则按“…ununun…”的方式缩合而成。这种结构上的差异决定了两者性质上的巨大差异。人类的消化液中含有能使淀粉的“uu”键分解的消化酶,因此能够从淀粉中获得葡萄糖;但同样的酶对纤维素的“un”键却无能为力。实际上没有一种高等生物能够消化纤维素,倒是有些微生物,如寄生在反刍动物和白蚁肠道中的微生物却能做到这一点。也多亏了这些不起眼的助手,使让我们受益非浅的牛能吃草而生存,使让我们狼狈不堪的白蚁能靠啃木头而活命。纤维素虽不能吃,用途却很大。棉麻纤维素可以用来织布做衣,但它的光泽没有蚕丝织品好,这是因为蚕丝是蛋白质,棉麻是纤维素。影响色泽的主要因素还在其结构形状。蚕丝的形状是圆筒状的,而绵纤维则呈扁平卷曲状。因此用一定的工业方法处理棉纱,就可使它有了丝的光泽,这种方法一般称为丝光处理。经丝光处理过后的棉纱就称为丝光棉。但是这种布料下水洗上几次就变了,光泽也就失去了。
    人们在偶然之中发现纤维素也可以做炸药。1839年,德国出生的瑞士化学家舍恩拜因在他家的厨房里做实验(他夫人严禁如此,一定是他趁其不在而偷偷地进行的),洒了一瓶硫酸和硝酸的混合物。他立刻抓起夫人的棉布围裙去擦,然后把围裙放在火炉上方烘烤。结果,“轰”地一声,围裙着了起来,片刻之间消失得无影无踪。舍恩拜因意识到发明了一种新的炸药。他给这种炸药取名为“火药棉”。由于火药棉威力巨大,而且爆炸时没有烟,这比以前的有烟火药好得多。于是舍恩拜因开始在各国游说他的火药棉秘方,而战火连绵的欧洲对此也十分感兴趣。结果一批批的工厂建起来,但不久,这些工厂就全被炸光了。火药棉太容易爆炸了,稍微受热或碰撞都能引起灾难性的后果。直到1889年,杜瓦和阿贝尔把火药棉和硝酸甘油混合,再掺入凡士林并压成线绳状,才是无烟火药的真正问世。在火药棉中,将一个硝酸根与葡萄糖中的一个氢氧根(羟根)连接,这是改造纤维素的一种方法。在这种方法中,所有可被取代的羟基全被硝化了。如果只将其部分羟基硝化会如何呢?是不是就不太容易爆炸了呢?试验结果表明它根本就不会爆炸,却很容易燃烧。这种物质被称为焦木素。焦木素溶于乙醇和乙醚的混合物,蒸发后得到一种坚韧的透明薄膜,称为胶棉。胶棉也很容易燃烧,但无爆炸性。
若有疑问,不妨搜索一下:
转载或变相转载,请注明出处:无忧化学(www.56hx.cn)谢谢!!
0
 

知识杂谈